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CPTIMIZED COMPOUND CURRENT LEADS

V. K. Litvinov, V. I. Kurochkin, UDC 536,483
and V, I, Karlashchuk

A method is given that provides an acceptable approximation to minimizing the energy consump-
tion on the basis of the finite heat-transfer coefficient and the additional heat sources.

Economy and reliability of the current leads are frequently the decisive factors in the design of a cryo-
genic magnet system. Here we present some results from theoretical studies on optimized leads that enable
one to implement designs providing maximum economy and reliability at the drafting stage.

Detailed studies have been made [1-5| on current leads by means of the recuperation coefficient 8, which
represents the criterion for nonideal cooling. It is assumed that the recuperation coefficient is known from
experiment for leads of constant cross section and that the value is in the range 0.5 = B < 1; the heat-transfer
coefficient defines the actual cooling process, and this can be used in a method in which § is a specified cri-
terion for minimizing the energy consumption [6]. Then the recuperation coefficient is governed by the spe-
cified temperature differences along the normal part of the current lead. The method allows one to use a
specified deviation from minimum energy consumption in calculating the geometrical parameters of the lead
when this is of variable cross section and the local heat-transfer coefficients are known,

We consider the heat-balance equation for a lead in the stationary one-dimensional approximation [1-5]:

2
dg = cpm ar, . Pp) , 6}
dT ar q
dx AS
— 2
T . (2)

and the expression for the current dimensions, which is derived by transforming (2) in conjunction with the
equation for the heat balance involving the cooling vapor in the steady-state one-dimensional approximation.

We also assume that the thermal conductivity of the cooling vapor is negligible and that the heat-transfer
conditions are identical over the entire surface of the lead:
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dr,

Cpilt q
PS = _Ta-(T—iIT_,)—’ (3)
We assume that the shape of the cross section is given:
S = f(P). 4
The boundary conditions are
x=0, TO), T,0=T, x=L, T, (5)
where T(0) is determined from the condition for heat transfer at the cold end of the lead:
qQ) =a; Py (TO)—Tp). (6)
At the boundary between the normal and superconducting parts of the lead
x=1, Th=T,, T:() ("
The boundary conditions for optimality are
q() =0, TL)—T,(L)=8. ]

If the physical parameters of the normal part follow the Wiedeman — Franz law, then we put dTy./dT = const in
(1) and can use the solution of [2].

In the case of current leads in a cryogenic magnet system

_90+0
S

m

(9)

We substitute (9) into (1) and (3) and convert to the specific heat flux to get

dB _  dT, (BO+K\  ph
ar c”dr( ; ) B’ (10)
dT
er -2 (B O) 1 K0
PS = a — 1)
AT —T)r R | (1

i.e., the distribution of the specific fluxes by temperature level is independent of the current, while the prod-
uct of the perimeter by the cross section is proportional to the square of the current and inversely proportional
to the heat-transfer coefficient.

If a current lead is made of a thin strip (P = 2h,, S = hyhy),

b= -2 F (1), (12)
a 5
T(0) A
L= *D drT, (13)
a R
)

i,e., the current width of the lead is directly proportional to the current and inversely proportional to the heat-
transfer coefficient, while the length is independent of the current and is inversely related to the heat-transfer
coefficient,

As there is no heating in the superconducting part, we assume that (5) and (7) are met by appropriate
extension of the heat-transfer areas.

Then the mass flow rate of (9) is determined by the conditions at the boundary between the superconduct-
ing and normal parts:

g+ @
m=——————
r i) —ip (14)
or in terms of the specific mass flow rate
M= BO+K (15)
r+i()—ip
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Fig. 1. Dependence on 8 — 1 of: a) energy consumption E/I,
W/A (1); heat flux at the cold end q(0)/I, W/A (2); b) length L,
m (of the normal partof thelead) (1); relative energy consump-
tion E/Emin (2); mass flow rate M/I, kg/sec-A (3) for various
additional heat fluxes into the liquid helium: K, = 0; K,=4-10"*
W/A; Kg=8-10"* w/A,

The definition of the recuperation coefficient is [5]:

dT,
p= T (16)

We now consider some possible forms of cooling for the normal part.

We assume that

p= T()—T,

amn

This assumption substantially simplifies the analysis without loss of generality, since any smooth func-
tion can be approximated by a piecewise-linear one, It follows from {17) that 8 > 1 since Tg > Tp{I) + 6 on all
occasions.

Figure la shows the necessary energy consumption, the specific heat flux, and the specific mass flow
rate as functions of § — 1 for various K as derived by numerical solution by computer of (2), (10), (11), and
(15). The material of the normal part is brass [6] and the transition temperature for the superconductor is
8K.

As B =1 corresponds to cooling the current lead with minimum energy consumption, we have to ensure
that Tg — Tp(D) =4,

Maximal energy consumption is involved in implementing the process with T(!) = Ty, and Bmax.

The physical meaning of this is that maximum use must be made of the cold content of the cooling vapor
over the superconducting part in order to conduct the process with the minimum possible energy consumption
while maintaining set temperatures in the lead, In that case, one can provide stable points of transition along
the current lead and reduce the dependence on the variable level of the liquid helium by utilizing the vapor with
a transverse radiator having an extensive surface, which is installed at the transition point. The calculations
on this radiator are performed by standard methods [6].

Figure 1b shows the length of a strip lead (h, = 5+107? m) as a function of # — 1 for various K; the dif-
ference in temperature between the current lead and the cooling vapor at the warm end is 0,05°K, while the
heat-transfer coefficient is @ = 9-102A .

The trend in the curves in the region g —1 ~ 0 confirms the obvious fact that implementation of the
ideal process is meaningless for a finite value of the heat-transfer coefficient, since then L — «,
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The relative excess over the minimum consumption is a function of 8 —~ 1, and the values for different K
allow one to utilize a given K to draw up an unambiguous relationship between 8 — 1 and the deviation from
minimum energy consumption, Therefore B, or more conveniently 8 — 1, can be used as the criterion for
implementing minimum energy consumption,

In the design of a cryogenic magnet, it is sometimes necessary to tap off cooling vapor to cool various
additional devices; this case is realized for K < 0 in this method.

In order to build a completely gas—cooled current lead it is necessary to provide an elevated value for
the specific additional heat flux or else some other source of cooling vapor such that q{(0) =~ 0,

Figure 1a show that the energy consumption in maintaining the temperature conditions is reduced as the
additional source is activated for B — 1, i.e., it is better to operate current leads with X > 0,

However, Fig. 1b shows that realization of current leads at elevated values of the specific additional
heat flux results in an increase in the length of the lead if a given ratio to the minimum energy consumption is
to be preserved. In that case, in order to obtain acceptable dimensions it is necessary to increase the heat-
transfer coefficient, as (11) shows,

The calculations on the lead are performed in the following stages,

From the given K, which is governed by the design of the cryogenic magnet, and the acceptable deviation,
we establish the recuperation coefficient (Fig, 1b).

Equations (2), (11), etc. are solved to determine the geometrical parameters and the temperature dis-
tribution along the current lead.

The heat-balance equation is solved for the boundary between the normal and superconducting parts to
determine the necessary area of the radiator,

If the length of the lead exceeds the maximum permissible size, then design measures are introduced to
increase the heat-transfer coefficient.

The following conclusions are drawn from the above,

1. This method of designing optimized compound current leads allows one to implement a cooling mode
with a given deviation from minimum energy consumption,

2. The recuperation coefficient is the criterion for deviation from minimum energy consumption for
given specific heat fluxes.

3. The geometrical dimensions can be reduced for large specific heat fluxes or with pure gas cooling
provided that the cooling is accelerated and that the lead has an increased ratio of perimeter to cross section
{thin strip). '

4. In order to reduce the energy consumption it is necessary to accelerate the cooling at the boundary
between the superconducting and normal parts by installing additional heat-transfer surfaces,

5. In order to reduce the minimum energy consumption required to maintain the temperature conditions
it is necessary to make the maximum possible use of additional heat fluxes in the cooling-vapor source,

NOTATION

X, current coordinate; L, lead length; I, superconducting length of lead; o, resistivity of the normal
lead; A, thermal conductivity; Cp, specific heat of coolant vapor; Ar, thermal conduetivity of vapor; a, local
heat-transfer coefficient; m, mass flow rate of vapor; M = m/I, specific flow rate of vapor; &, additional
heat inflow; i, vapor enthalpy; iy, vapor enthalpy at the boiling point; Ty, instantaneous vapor temperature;
Tg, superconductor transition temperature; Ty, boiling point; q, heat flux; B = /I, specific heat flux; 8,
recuperation coefficient; I, current, P, perimeter; S, cross-sectional area; r, heat of vaporization, &, small
quantity; hy, bandwidth; h,, band thickness; aj, heat-transfer coefficient for liquid helium; Pj, wetted
perimeter; K = &/1, specific additional inflow; T, instantaneous lead temperature,
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ESTIMATING THE RANGE OF APPLICABILITY OF THE
HYPERBOLIC THERMAL CONDUCTIVITY EQUATION

K. V. Lakusta and Yu. A, Timofeev . UDC 536.24.02

A generalized thermal conductivity equation is considered. The geometric dimensions of regions
in which temperature fields may be described by hyperbolic or parabolic thermal conductivity
equations are estimated.

In the last decade wide use has been made of the hyperbolic thermal conductivity equation

T, T (x, ©) n aT (x, 7) —a T (x, 7) @
ot ot ox?
for description of high-intensity processes. In this equation, proposed in [1], 7y is the relaxation time; a,
thermal diffusivity coefficient; W = vVa/7., A,c, p, rate of propagation of heat, the thermal conductivity, the
specific heat, and density.

In a layer of material of thickness ! we will consider the mathematical model of the thermal conductivity
process described by Eq. (1) with initial conditions

aT (x, 0)

o = @z (%) (2

T (x, 0) = @1 (x),

and boundary conditions
a TEDL D T (= DL 9= 0, (0, = 1, 2. &)
The coefficients @j,, ¢, take on the values 0 and 1, depending upon the form of the boundary conditions,

Following [2], we construct the solution of the system (1)-(3) in the form

T 9= EAn (@) Xo () + ¥ (x, 7). 4
n=1
An auxiliary, sufficiently smooth function ¥{(x, 7) which reduces inhomogeneous conditions to homoge-
neous is constructed in a manner such that
' O¥ (x, 0) _

¥ (x, 0) = @u(x), o

(Pz(x),

o, PTE =1L D
Ox

F((—1I, 9=0, i=1,2,

F(=Da¥ (-1 )=,
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